EO-1 and its potential coastal applications

ZhongPing Lee¹, Brandon Casey¹, Marcos Montes², Dennis Clark³, Rost Parsons¹, Wesley Goode¹, Robert Arnone¹, Curtis Davis², BoCai Gao²

¹NRL, Stennis Space Center, MS

²NRL, Washington DC

³NOAA, Silver Spring, MD

Outline:

- Project description
 - sensors objectives participants
- Project status
 examples of Hyperion collections
 example of processed Hyperion data
- 3. Preliminary findings
- 4. Next

Project description: a. sensors on EO-1

Launched on November 21, 2000, for land applications.

- i. Atmosphere Corrector (AC)
- ii. Advanced Land Imager (ALI)
- iii. Hyperion

• Sensor continued:

	EO-1		
Parameters	AC	ALI	Hyperion
Spectral Range	0.9 – 1.6 um	0.44-2.4 μm	0.43-2.4 μm
Spectral Resolution	2.8 – 9 nm	Variable	~10 nm
Spectral Coverage	Continuous	Discrete	Continuous
Total # of Bands	256	10	220
Spatial Resolution	250m	30m	30m
Swath Width	185 km	37Km	7.7Km

EO-1 and Landsat 7 Descending Orbit Ground Tracks

Orbit of EO-1 and Landsat

Characters of Hyperion:

NASA's only hyperspectral sensor in orbit!!!

- High spectral capability (430 2400 nm, ~every 10 nm)
- High spatial resolution 30m GSD
- Low Signal-to-Noise Ratio (SNR ~50 160)
- Narrow swath coverage (7 km)
- Repeat time (16 days for same coverage area)
- Not real time capability (~20-day delay)

SIGNAL-TO-NOISE

Hyperion VS SeaWiFS

SeaWiFS Designed for Ocean Applications

? SNR
412: 499
443: 674
490: 667
510: 640
555: 596
670: 442
765: 455
865: 467

High SNR

Question:

Are there any potentials for ocean/coastal applications?

Example of Hyperion image

(TOA radiance)

What does the color difference mean?

Different water?

Different bottom?

Or different depth?

Can they be separated?? and get meaningful quantities.

• Project description: b. objectives

- i. Evaluate EO-1 potentials for coastal waters
- ii. Develop/compare atmosphere correction
- iii. Compare retrieved environmental properties

• Project description: c. participants

Robert Arnone NRL

Bo-Cai Gao NRL

Curtis Davis NRL

Dennis Clark NOAA

Knut Stamnes SIT

Marcos Montes NRL

John Pereira NOAA

ZhongPing Lee NRL

2. Project status:

Over 30 Scenes Ordered and Collected for Coastal areas

- 7 co-incident field cruises
 - Looe Key (FL Keys) Clear Waters
 - Horn Island (MS) Turbid waters
 - Apalachicola Bay Clear/turbid waters
 - Fort Lauderdale Clear/turbid waters
 - Chesapeake Bay turbid waters
 - MOBY clear waters
 - Oahu bay -
 - Measurements include (not necessary ALL):

water IOP/AOP

Laser bathymetry

Atmosphere properties

In the earlier stage of data processing

- -atmosphere correction
- -Water/bottom property retrieval
- -Comparison/validation

2.1 Example of Hyperion collections:

Chesapeake Bay, 6 Sep '02

Looe Key, FL 26 Oct '02

Florida Bay 3/19/04

Smith Island 3/12/04

2.2 Example of processed Hyperion data

1. Calibrated Level-1 absolute radiance data are provided through USGS.

TOA radiance accuracy is within 5% (Barry et al. 2001)

- 2. Atmosphere correction → Rrs testing different algorithms
- 3. Rrs → water/bottom properties

One example ...

Rrs comparison

Red: insitu Rrs

Green: Hyperion Rrs

("MOBY")

Retrieve shallow-water Properties

Results from Hyperion

Bottom depth (m) Water absorption at 440 nm (m⁻¹ Bottom reflectance

Different patterns!

Results using Hyperion Rrs

3. Preliminary findings:

- a. Hyperion DOES have the sensitivity for many coastal applications.
- b. Water and/or bottom properties could be well retrieved when high-quality Rrs are derived.

Issues:

- a. No effective bands below 430 nm
- b. TOA radiance error is ~5%
- c. Lacking information for accurate georeference
- d. No automatic system for atmosphere correction ... yet

4. Next:

- Validate Hyperion results
- Apply the above process methods to other Hyperion data
- Try/Test with ALI data
- Analyze the limits of Hyperion/ALI data and the process methods
- Make recommendations regarding future spaceborne hyperspectral sensors

To be continued ...